Extract the joint membership of a pair of countries across IGOs
Source:R/igo_dyadic.R
igo_dyadic.Rd
Dyadic version of the data. The unit of observation is a dyad of countries. It provides a summary of the joint memberships of two countries across IGOs over time.
Source
Codebook Version 3 IGO Data for full reference.
Arguments
- country1, country2
A state of vector of states to be compared. It could be any valid name or code of a state as specified on states2016.
- year
Year to be assessed, an integer or an array of year.
- ioname
Optional.
ioname
or vector ofioname
corresponding to the IGOs to be assessed. IfNULL
(the default), all IGOs would be extracted. See codes onigo_search()
.
Value
A coded data.frame
representing the years and country dyad
(rows) and the IGOs selected (columns). See Details.
Details
This function tries to replicate the information contained in the original
file distributed by The Correlates of War Project (dyadic_format3.dta
).
That file is not included in this package due to its size.
The result is a data.frame
containing the common years of
the states selected via country1, country2, year
by rows.
An additional column dyadid
, computed as (1000*ccode1)+ccode2
is provided
in order to identify relationships.
For each IGO selected via ioname
(or all if the default option has been
used) a column (using lowercase ioname
as identifier) is provided with the
following code system:
Category | Numerical Value |
No Joint Membership | 0 |
Joint Full Membership | 1 |
Missing data | -9 |
State Not System Member | -1 |
See igo_recode_dyadic()
section for an easy way to recode the numerical
values into factors.
If one state in an IGO is a full member but the other is an associate member or observer, that IGO is not coded as a joint membership.
Differences with the original dataset
There are some differences on the results provided by this function and the
original dataset on some IGOs regarding the "Missing Data" (-9
) and
"State Not System Member" (-1
). However it is not clear how to fully
replicate those values.
References
Pevehouse, J. C., Nordstrom, T., McManus, R. W., & Jamison, A. S. (2020). Tracking organizations in the world: The Correlates of War IGO Version 3.0 datasets. Journal of Peace Research, 57(3), 492–503. doi:10.1177/0022343319881175 .
Examples
usa_esp <- igo_dyadic("USA", "Spain")
nrow(usa_esp)
#> [1] 199
ncol(usa_esp)
#> [1] 546
dplyr::tibble(usa_esp)
#> # A tibble: 199 × 546
#> dyadid ccode1 stateabb1 statenme1 state1 ccode2 stateabb2 statenme2 state2
#> <dbl> <int> <chr> <chr> <chr> <int> <chr> <chr> <chr>
#> 1 2002 2 USA United Stat… usa 230 SPN Spain spain
#> 2 2002 2 USA United Stat… usa 230 SPN Spain spain
#> 3 2002 2 USA United Stat… usa 230 SPN Spain spain
#> 4 2002 2 USA United Stat… usa 230 SPN Spain spain
#> 5 2002 2 USA United Stat… usa 230 SPN Spain spain
#> 6 2002 2 USA United Stat… usa 230 SPN Spain spain
#> 7 2002 2 USA United Stat… usa 230 SPN Spain spain
#> 8 2002 2 USA United Stat… usa 230 SPN Spain spain
#> 9 2002 2 USA United Stat… usa 230 SPN Spain spain
#> 10 2002 2 USA United Stat… usa 230 SPN Spain spain
#> # ℹ 189 more rows
#> # ℹ 537 more variables: year <dbl>, ccode <dbl>, state <dbl>, aaaid <dbl>,
#> # aacb <dbl>, aalco <dbl>, aaro <dbl>, aata <dbl>, aatpo <dbl>, abeda <dbl>,
#> # abepseac <dbl>, acc <dbl>, acct <dbl>, acdt <dbl>, aci <dbl>, acml <dbl>,
#> # acp <dbl>, acpeu <dbl>, acs <dbl>, acso <dbl>, acssrb <dbl>, acu <dbl>,
#> # acwl <dbl>, afesd <dbl>, afeximb <dbl>, afgec <dbl>, afpu <dbl>,
#> # afrand <dbl>, afristat <dbl>, afspc <dbl>, afte <dbl>, agc <dbl>, …
# Using custom parameters
custom <- igo_dyadic(
country1 = c("France", "Germany"), country2 = c("Sweden", "Austria"),
year = 1992:1993, ioname = "EU"
)
dplyr::glimpse(custom)
#> Rows: 8
#> Columns: 11
#> $ dyadid <dbl> 220220, 220220, 255255, 255255, 220220, 220220, 255255, 2552…
#> $ ccode1 <int> 220, 220, 255, 255, 220, 220, 255, 255
#> $ stateabb1 <chr> "FRN", "FRN", "GMY", "GMY", "FRN", "FRN", "GMY", "GMY"
#> $ statenme1 <chr> "France", "France", "Germany", "Germany", "France", "France"…
#> $ state1 <chr> "france", "france", "germany", "germany", "france", "france"…
#> $ ccode2 <int> 380, 380, 380, 380, 305, 305, 305, 305
#> $ stateabb2 <chr> "SWD", "SWD", "SWD", "SWD", "AUS", "AUS", "AUS", "AUS"
#> $ statenme2 <chr> "Sweden", "Sweden", "Sweden", "Sweden", "Austria", "Austria"…
#> $ state2 <chr> "sweden", "sweden", "sweden", "sweden", "austria", "austria"…
#> $ year <dbl> 1992, 1993, 1992, 1993, 1992, 1993, 1992, 1993
#> $ eu <dbl> -1, 0, -1, 0, -1, 0, -1, 0