Skip to contents

Extract all the countries belonging to an IGO on a specific date.

Usage

igo_members(ioname, year = NULL, status = "Full Membership")

Arguments

ioname

Any valid ioname of an IGO as specified on igo_year_format3. It could be also a vector of IGOs.

year

Year to be assessed, an integer or an array of year. If NULL the latest year available of the IGO would be extracted.

status

Character or vector with the membership status to be extracted. See Details on state_year_format3.

Value

A data.frame.

Examples

library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
igo_members("EU", year = 1993) %>% as_tibble()
#> # A tibble: 12 × 8
#>    ioname ccode state       statenme        year value category        orgname  
#>    <chr>  <dbl> <chr>       <chr>          <dbl> <dbl> <fct>           <chr>    
#>  1 EU       200 uk          United Kingdom  1993     1 Full Membership European…
#>  2 EU       205 ireland     Ireland         1993     1 Full Membership European…
#>  3 EU       210 netherlands Netherlands     1993     1 Full Membership European…
#>  4 EU       211 belgium     Belgium         1993     1 Full Membership European…
#>  5 EU       212 luxembourg  Luxembourg      1993     1 Full Membership European…
#>  6 EU       220 france      France          1993     1 Full Membership European…
#>  7 EU       230 spain       Spain           1993     1 Full Membership European…
#>  8 EU       235 portugal    Portugal        1993     1 Full Membership European…
#>  9 EU       255 germany     Germany         1993     1 Full Membership European…
#> 10 EU       325 italy       Italy           1993     1 Full Membership European…
#> 11 EU       350 greece      Greece          1993     1 Full Membership European…
#> 12 EU       390 denmark     Denmark         1993     1 Full Membership European…
igo_members("EU") %>% as_tibble()
#> # A tibble: 28 × 8
#>    ioname ccode state       statenme        year value category        orgname  
#>    <chr>  <dbl> <chr>       <chr>          <dbl> <dbl> <fct>           <chr>    
#>  1 EU       200 uk          United Kingdom  2014     1 Full Membership European…
#>  2 EU       205 ireland     Ireland         2014     1 Full Membership European…
#>  3 EU       210 netherlands Netherlands     2014     1 Full Membership European…
#>  4 EU       211 belgium     Belgium         2014     1 Full Membership European…
#>  5 EU       212 luxembourg  Luxembourg      2014     1 Full Membership European…
#>  6 EU       220 france      France          2014     1 Full Membership European…
#>  7 EU       230 spain       Spain           2014     1 Full Membership European…
#>  8 EU       235 portugal    Portugal        2014     1 Full Membership European…
#>  9 EU       255 germany     Germany         2014     1 Full Membership European…
#> 10 EU       290 poland      Poland          2014     1 Full Membership European…
#> # ℹ 18 more rows
igo_members("NAFTA", year = c(1995:1998)) %>% as_tibble()
#> # A tibble: 12 × 8
#>    ioname ccode state  statenme                  year value category     orgname
#>    <chr>  <dbl> <chr>  <chr>                    <dbl> <dbl> <fct>        <chr>  
#>  1 NAFTA      2 usa    United States of America  1995     1 Full Member… North …
#>  2 NAFTA     20 canada Canada                    1995     1 Full Member… North …
#>  3 NAFTA     70 mexico Mexico                    1995     1 Full Member… North …
#>  4 NAFTA      2 usa    United States of America  1996     1 Full Member… North …
#>  5 NAFTA     20 canada Canada                    1996     1 Full Member… North …
#>  6 NAFTA     70 mexico Mexico                    1996     1 Full Member… North …
#>  7 NAFTA      2 usa    United States of America  1997     1 Full Member… North …
#>  8 NAFTA     20 canada Canada                    1997     1 Full Member… North …
#>  9 NAFTA     70 mexico Mexico                    1997     1 Full Member… North …
#> 10 NAFTA      2 usa    United States of America  1998     1 Full Member… North …
#> 11 NAFTA     20 canada Canada                    1998     1 Full Member… North …
#> 12 NAFTA     70 mexico Mexico                    1998     1 Full Member… North …

# Extract different status
igo_members("ACCT", status = c("Associate Membership", "Observer")) %>%
  as_tibble()
#> # A tibble: 25 × 8
#>    ioname ccode state       statenme            year value category      orgname
#>    <chr>  <dbl> <chr>       <chr>              <dbl> <dbl> <fct>         <chr>  
#>  1 ACCT     347 kosovo      Kosovo              2014     2 Associate Me… Franco…
#>  2 ACCT     352 cyprus      Cyprus              2014     2 Associate Me… Franco…
#>  3 ACCT     694 qatar       Qatar               2014     2 Associate Me… Franco…
#>  4 ACCT      42 domrepublic Dominican Republic  2014     3 Observer      Franco…
#>  5 ACCT      70 mexico      Mexico              2014     3 Observer      Franco…
#>  6 ACCT      94 costarica   Costa Rica          2014     3 Observer      Franco…
#>  7 ACCT     165 uruguay     Uruguay             2014     3 Observer      Franco…
#>  8 ACCT     290 poland      Poland              2014     3 Observer      Franco…
#>  9 ACCT     305 austria     Austria             2014     3 Observer      Franco…
#> 10 ACCT     310 hungary     Hungary             2014     3 Observer      Franco…
#> # ℹ 15 more rows

# States no members of the UN
igo_members("UN", status = "No Membership") %>%
  as_tibble()
#> # A tibble: 2 × 8
#>   ioname ccode state  statenme  year value category      orgname       
#>   <chr>  <dbl> <chr>  <chr>    <dbl> <dbl> <fct>         <chr>         
#> 1 UN       347 kosovo Kosovo    2014     0 No Membership United Nations
#> 2 UN       713 taiwan Taiwan    2014     0 No Membership United Nations

# Vectorized
igo_members(c("NAFTA", "EU"), year = 1993) %>%
  as_tibble() %>%
  arrange(state)
#> # A tibble: 15 × 8
#>    ioname ccode state       statenme                 year value category orgname
#>    <chr>  <dbl> <chr>       <chr>                   <dbl> <dbl> <fct>    <chr>  
#>  1 EU       211 belgium     Belgium                  1993     1 Full Me… Europe…
#>  2 NAFTA     20 canada      Canada                   1993     1 Full Me… North …
#>  3 EU       390 denmark     Denmark                  1993     1 Full Me… Europe…
#>  4 EU       220 france      France                   1993     1 Full Me… Europe…
#>  5 EU       255 germany     Germany                  1993     1 Full Me… Europe…
#>  6 EU       350 greece      Greece                   1993     1 Full Me… Europe…
#>  7 EU       205 ireland     Ireland                  1993     1 Full Me… Europe…
#>  8 EU       325 italy       Italy                    1993     1 Full Me… Europe…
#>  9 EU       212 luxembourg  Luxembourg               1993     1 Full Me… Europe…
#> 10 NAFTA     70 mexico      Mexico                   1993     1 Full Me… North …
#> 11 EU       210 netherlands Netherlands              1993     1 Full Me… Europe…
#> 12 EU       235 portugal    Portugal                 1993     1 Full Me… Europe…
#> 13 EU       230 spain       Spain                    1993     1 Full Me… Europe…
#> 14 EU       200 uk          United Kingdom           1993     1 Full Me… Europe…
#> 15 NAFTA      2 usa         United States of Ameri…  1993     1 Full Me… North …

# Use countrycodes package to get additional codes
if (requireNamespace("countrycode", quietly = TRUE)) {
  library(countrycode)
  EU <- igo_members("EU")
  EU$iso3c <- countrycode(EU$ccode, origin = "cown", destination = "iso3c")

  EU$continent <- countrycode(EU$ccode,
    origin = "cown",
    destination = "continent"
  )

  tibble(EU)
}
#> # A tibble: 28 × 10
#>    ioname ccode state      statenme  year value category orgname iso3c continent
#>    <chr>  <dbl> <chr>      <chr>    <dbl> <dbl> <fct>    <chr>   <chr> <chr>    
#>  1 EU       200 uk         United …  2014     1 Full Me… Europe… GBR   Europe   
#>  2 EU       205 ireland    Ireland   2014     1 Full Me… Europe… IRL   Europe   
#>  3 EU       210 netherlan… Netherl…  2014     1 Full Me… Europe… NLD   Europe   
#>  4 EU       211 belgium    Belgium   2014     1 Full Me… Europe… BEL   Europe   
#>  5 EU       212 luxembourg Luxembo…  2014     1 Full Me… Europe… LUX   Europe   
#>  6 EU       220 france     France    2014     1 Full Me… Europe… FRA   Europe   
#>  7 EU       230 spain      Spain     2014     1 Full Me… Europe… ESP   Europe   
#>  8 EU       235 portugal   Portugal  2014     1 Full Me… Europe… PRT   Europe   
#>  9 EU       255 germany    Germany   2014     1 Full Me… Europe… DEU   Europe   
#> 10 EU       290 poland     Poland    2014     1 Full Me… Europe… POL   Europe   
#> # ℹ 18 more rows