The tidyterra package
tidyterra adds common tidyverse methods for SpatRaster and SpatVector objects from the terra package, and provides geom_spat*() geoms for plotting these objects with ggplot2.
Why tidyterra?
Spat* objects differ from regular data frames: they are S4 objects with their own syntax and computational methods (implemented in terra). By providing tidyverse verbs—especially dplyr and tidyr methods—tidyterra lets users manipulate Spat* objects in a style similar to working with tabular data.
Note: terra is generally more performant. Learning some terra syntax is recommended because tidyterra functions call, where possible, the corresponding terra equivalents.
A note for advanced terra users
tidyterra is not optimized for performance. Operations such as filter() and mutate() can be slower than their terra counterparts.
As a rule of thumb, tidyterra is most suitable for objects with fewer than 1e7 “slots” (i.e., terra::ncell(a_rast) * terra::nlyr(a_rast) < 1e7).
Get started with tidyterra
Load tidyterra together with core tidyverse packages:
library(tidyterra)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(tidyr)Currently, the following methods are available:
Let’s see some of these methods in action.
SpatRasters
Example using a SpatRaster:
library(terra)
f <- system.file("extdata/cyl_temp.tif", package = "tidyterra")
temp <- rast(f)
temp
#> class : SpatRaster
#> size : 87, 118, 3 (nrow, ncol, nlyr)
#> resolution : 3881.255, 3881.255 (x, y)
#> extent : -612335.4, -154347.3, 4283018, 4620687 (xmin, xmax, ymin, ymax)
#> coord. ref. : World_Robinson
#> source : cyl_temp.tif
#> names : tavg_04, tavg_05, tavg_06
#> min values : 1.885463, 5.817587, 10.46338
#> max values : 13.283829, 16.740898, 21.11378
mod <- temp |>
select(-1) |>
mutate(newcol = tavg_06 - tavg_05) |>
relocate(newcol, .before = 1) |>
replace_na(list(newcol = 3)) |>
rename(difference = newcol)
mod
#> class : SpatRaster
#> size : 87, 118, 3 (nrow, ncol, nlyr)
#> resolution : 3881.255, 3881.255 (x, y)
#> extent : -612335.4, -154347.3, 4283018, 4620687 (xmin, xmax, ymin, ymax)
#> coord. ref. : World_Robinson
#> source(s) : memory
#> names : difference, tavg_05, tavg_06
#> min values : 2.817647, 5.817587, 10.46338
#> max values : 5.307511, 16.740898, 21.11378In this example we:
- Removed the first layer (
tavg_04). - Created a new layer
newcolas the difference betweentavg_06andtavg_05. - Relocated
newcolto be the first layer. - Replaced
NAvalues innewcolwith3. - Renamed
newcoltodifference.
Throughout these steps, core properties of the SpatRaster (number of cells, rows and columns, extent, resolution, and CRS) remain unchanged. Other verbs such as filter(), slice(), or drop_na() may alter these properties in a manner analogous to how row operations affect data frames.
SpatVectors
Since tidyterra 0.4.0, most dplyr and tidyr verbs work with SpatVector objects, so you can arrange, group, and summarise their attributes.
lux <- system.file("ex/lux.shp", package = "terra")
v_lux <- vect(lux)
v_lux |>
# Create categories
mutate(gr = cut(POP / 1000, 5)) |>
group_by(gr) |>
# Summary
summarise(
n = n(),
tot_pop = sum(POP),
mean_area = mean(AREA)
) |>
# Arrange
arrange(desc(gr))
#> class : SpatVector
#> geometry : polygons
#> dimensions : 3, 4 (geometries, attributes)
#> extent : 5.74414, 6.528252, 49.44781, 50.18162 (xmin, xmax, ymin, ymax)
#> coord. ref. : lon/lat WGS 84 (EPSG:4326)
#> names : gr n tot_pop mean_area
#> type : <fact> <int> <num> <num>
#> values : (147,183] 2 3.594e+05 244
#> (40.7,76.1] 1 4.819e+04 185
#> (4.99,40.7] 9 1.944e+05 209.8As with SpatRaster, essential properties such as geometry and CRS are preserved during these operations.
Plotting with ggplot2
SpatRasters
When a SpatRaster has a CRS defined (terra::crs(a_rast) != ""), the geom uses ggplot2::coord_sf() and can be reprojected to match other spatial layers.
library(ggplot2)
# A faceted SpatRaster
ggplot() +
geom_spatraster(data = temp) +
facet_wrap(~lyr) +
scale_fill_whitebox_c(
palette = "muted",
na.value = "white"
)
A faceted map using SpatRaster
# Contour lines for a specific layer
f_volcano <- system.file("extdata/volcano2.tif", package = "tidyterra")
volcano2 <- rast(f_volcano)
ggplot() +
geom_spatraster(data = volcano2) +
geom_spatraster_contour(data = volcano2, breaks = seq(80, 200, 5)) +
scale_fill_whitebox_c() +
coord_sf(expand = FALSE) +
labs(fill = "elevation")
Contour lines plot for a SpatRaster
# Contour filled
ggplot() +
geom_spatraster_contour_filled(data = volcano2) +
scale_fill_whitebox_d(palette = "atlas") +
labs(fill = "elevation")
Contour filled plot for a SpatRaster
tidyterra also supports RGB SpatRasters for imagery:
# Read a vector
f_v <- system.file("extdata/cyl.gpkg", package = "tidyterra")
v <- vect(f_v)
# Read a tile
f_rgb <- system.file("extdata/cyl_tile.tif", package = "tidyterra")
r_rgb <- rast(f_rgb)
rgb_plot <- ggplot(v) +
geom_spatraster_rgb(data = r_rgb) +
geom_spatvector(fill = NA, size = 1)
rgb_plot
A map combining a RGB SpatRaster and a SpatVector
tidyterra includes color scales suitable for hypsometric and bathymetric maps:
asia <- rast(system.file("extdata/asia.tif", package = "tidyterra"))
asia
#> class : SpatRaster
#> size : 164, 306, 1 (nrow, ncol, nlyr)
#> resolution : 31836.23, 31847.57 (x, y)
#> extent : 7619120, 17361007, -1304745, 3918256 (xmin, xmax, ymin, ymax)
#> coord. ref. : WGS 84 / Pseudo-Mercator (EPSG:3857)
#> source : asia.tif
#> name : file44bc291153f2
#> min value : -9558.468
#> max value : 5801.927
ggplot() +
geom_spatraster(data = asia) +
scale_fill_hypso_tint_c(
palette = "gmt_globe",
labels = scales::label_number(),
# Further refinements
breaks = c(-10000, -5000, 0, 2000, 5000, 8000),
guide = guide_colorbar(reverse = TRUE)
) +
labs(
fill = "elevation (m)",
title = "Hypsometric map of Asia"
) +
theme(
legend.position = "bottom",
legend.title.position = "top",
legend.key.width = rel(3),
legend.ticks = element_line(colour = "black", linewidth = 0.3),
legend.direction = "horizontal"
)
Map of Asia including hypsometric tints
SpatVectors
Plot SpatVectors with geom_spatvector():
lux <- system.file("ex/lux.shp", package = "terra")
v_lux <- terra::vect(lux)
ggplot(v_lux) +
geom_spatvector(aes(fill = POP), color = "white") +
geom_spatvector_text(aes(label = NAME_2), color = "grey90") +
scale_fill_binned(labels = scales::number_format()) +
coord_sf(crs = 3857)
Choropleth map with a SpatVector object
Implementation-wise, tidyterra converts terra::vect() output to sf via sf::st_as_sf() and then uses ggplot2::geom_sf() to render the layer.
You can also aggregate SpatVectors easily:
# Dissolving
v_lux |>
# Create categories
mutate(gr = cut(POP / 1000, 5)) |>
group_by(gr) |>
# Summary
summarise(
n = n(),
tot_pop = sum(POP),
mean_area = mean(AREA)
) |>
ggplot() +
geom_spatvector(aes(fill = tot_pop), color = "black") +
geom_spatvector_label(aes(label = gr)) +
coord_sf(crs = 3857)
Dissolving SpatVectors by group
# Same but keeping internal boundaries
v_lux |>
# Create categories
mutate(gr = cut(POP / 1000, 5)) |>
group_by(gr) |>
# Summary without dissolving
summarise(
n = n(),
tot_pop = sum(POP),
mean_area = mean(AREA),
.dissolve = FALSE
) |>
ggplot() +
geom_spatvector(aes(fill = tot_pop), color = "black") +
geom_spatvector_label(aes(label = gr)) +
coord_sf(crs = 3857)
Dissolving SpatVectors by group (keeping internal boundaries)
